
Andrea D’Angelo

Forgetting Right: Towards Reproducible
Benchmarks in Machine Unlearning with
ERASURE

Università degli Studi dell’Aquila / Italy

2

A quick scopus search shows that the topic is quickly on the rise.

Machine Unlearning

Machine Unlearning (MU) is a rapidly growing field, with several
publications and methods being published every month.

3

As often the case for new topics, benchmarking
standardization is still lacking.

We noticed that many works build code only relevant to
their specific use case.

This results in duplicated efforts and low reproduciblity.

Rationale (1)

4

The MU community needs a standardized tool for
reproducible and extensible testing.

This was our rationale for building ERASURE: a
modular, extensible framework for Machine
Unlearning.

Rationale (2)

ERASURE is a modular, extensible Machine Unlearning Framework.

5Design Patterns (1)

• Inversion of Control (IoC): shifts control of object creation and
execution flow from client code to an external framework. IoC
reduces tight coupling by delegating dependency management to
an external provider, often through dependency injection. ERASURE
leverages IoC for dynamic dependency management.

6Design Patterns (2)

• Factory Pattern: abstracts object instantiation. It encapsulates
object creation within a dedicated factory class, enabling flexible
instantiation. ERASURE uses the Factory Pattern to instantiate
Datasets, Models, Unlearners, and everything that is needed for a
complete Machine Unlearning workflow.

7Machine Unlearning Workflow

ERASURE was built with the MU workflow at its core.

ERASURE handles all the steps of a typical Machine Unlearning workflow:

𝒟𝑓

𝒟𝑟

𝒟

Train

Retrain
Evaluation

Unlearner

𝑀𝑔

𝑀𝑢

𝑀

Unlearning
Request

𝐼𝑓

8ERASURE’s Configuration
ALL the Experimental settings in ERASURE are defined through a single JSON file, called
Main Configuration.

The Main Configuration file needs to specify all these components.

9Main ConfigurationKDD ’25, August 03–07, 2025, Toronto, ON, Canada D’Angelo et al.

Evaluation techniques assess the model’s effectiveness by measur-
ing how much the unlearned model 𝐿𝐿 approximates 𝐿𝑀 regarding
accuracy retention (utility). At the same time, a key part of the evalua-
tion is determining whether 𝐿𝐿 has successfully erased the influence
of samples from 𝑀 𝑁 (efficacy). Finally, evaluation also considers how
much more efficient it is to apply the Unlearner compared to fully
retraining 𝐿𝑀 (efficiency). Together, these measures offer a clear and
comprehensive view of how effectively the unlearning process has
been carried out.
Inversion of Control (IoC) and Factory Pattern enhance modular-
ity, maintainability, and flexibility. IoC [25] shifts control of object
creation and execution flow from client code to an external frame-
work, while the Factory Pattern [28] abstracts object instantiation.
IoC reduces tight coupling by delegating dependency management
to an external provider, often through dependency injection. This
improves testability and facilitates modifications. ERASURE lever-
ages IoC for dynamic dependency management. The Factory Pattern
encapsulates object creation within a dedicated factory class, en-
abling flexible instantiation without direct constructor invocation.
This approach is particularly beneficial when multiple object varia-
tions exist or instantiation is complex. Although distinct in purpose,
IoC and the Factory Pattern work complementary.

4 ERASURE Unlearning Framework
In this section, we discuss the ERASURE Unlearning Framework,
by providing an overview of its design principles and workflow
management. Then, we highlight the core components available;
and finally discuss the advanced features available, which allow
additional flexibility when integrating new functionalities.
Design Principles - ERASURE develops and compares diverse un-
learning techniques across multiple datasets, tasks, and models in
a reproducible manner. The framework adheres to object-oriented
programming principles, leveraging abstract classes and fully inte-
grating the Factory Pattern alongside Inversion of Control paradigms
to ensure maximal extensibility and adaptability. By adhering to
these principles, ERASURE allows fully configurable workflows –
as detailed in the following – which facilitate robustness and pre-
cise control. Its modular architecture enables the easy integration of
new datasets, unlearning methods, base models, and evaluation met-
rics. Furthermore, to enhance reproducibility, ERASURE provides
implementations (cf. 4.1) of state-of-the-art unlearning techniques,
datasets, models, and evaluation measures, all of which can be read-
ily used for customized experiments by specifying them within the
main configuration file.
Workflow Configuration - The classic unlearning workflow – as
shown in Figure 2 – is implemented by ERASURE at a high level al-
lowing its full customization. This result can be achieved by defining
an experiment through a main configuration file (in JSON notation),
which enables the design and execution of complex testing scenarios
in a straightforward and reproducible manner. Before providing de-
tails on the configuration file, we highlight one of the most powerful
and interesting mechanisms implemented in ERASURE. Each com-
ponent can be instantiated directly using a minimal JSON snippet
that specifies the required class and its corresponding parameters.
Parameters can range from simple data types to complex class ob-
jects, structured in a nested manner within the configuration file.

1 "data": {"class":"erasure.data.<NS>.DatasetManager",
2 "parameters": {
3 "DataSource": { ... },
4 "partitions": ["p_1", "p_2", ... , "p_n"]
5 }},
6 "predictor": {"class": "erasure.model.<NS>.TorchModel",
7 "parameters": {
8 "optimizer": {"class": "torch.optim.Adam"},
9 "loss_fn": {"class": "torch.nn.CrossEntropyLoss"},

10 "model": {"class": "erasure.<NS>.BERTClassifier"}
11 }},
12 "unlearners":[
13 {"compose_gold" : "configs/snippets/u_gold.json"},
14 .
15 .
16 ,
17 {"class":"erasure.<NS>.AdvancedNegGrad",
18 "parameters": {
19 "epochs": 1,
20 "ref_data_retain": "retain",
21 "ref_data_forget": "forget",
22 "optimizer": {"class": "torch.optim.Adam",

"parameters": {"lr": 0.0001}}}
23 }
24],
25 "evaluator":{
26 "class": "erasure.evaluations.<NS>.Evaluator",
27 "parameters": { "measures":[...] } }

Listing 1: Structure of the main configuration snippet for an
ERASURE experiment. →𝑁𝑂↑ compacts sub-modules namespace.

Moreover, the classes and parameters that can be instantiated are not
limited to ERASURE’s built-in components; they can also reference
external libraries (e.g., PyTorch or scikit-learn) without requiring
any additional code.
The structure of the main configuration, outlined in Listing 1, con-
sists of four fundamental modules: data, predictor, unlearners, and
evaluator.
The data JSON snippet defines the dataset and its partitions, spec-
ified within the data JSON object (shown in Listing 1). This is
done by selecting the appropriate DataSource and structuring the
dataset into subsets using a chain of DataSplitters (see Line 4
of Listing 1 and the details in Listing 2).
The predictor JSON object defines all model-related details. In this
example, it specifies TorchModel to directly utilize PyTorch net-
works and configure all relevant parameters, including the optimizer
and loss function. Note that Lines 8 and 9 of Listing 1 show how
the original implementations and parameters can be used without
requiring coding anything.
The unlearners JSON array (line 12) defines the list of unlearn-
ers, which will be evaluated in sequence but in an isolated man-
ner. For example, lines 17-22 of Listing 1 show how to define the
AdvancedNegGrad unlearner, including its reference partitions
(lines 20–21) and optimizer parameters (line 22).
The evaluator JSON object (Line 25) defines the list of measures
that must be used with their parameters – omitted here for the sake of
space. Moreover, the compose_ capability allows the substitution
of any of the JSON snippets with additional files. For example, the
code at line 13 of Listing 1 will be replaced at runtime with the
file’s content configs/snippets/u_gold.json. Once the
configuration is complete, as shown in Figure 1, it is possible to run
the experiments by executing main.py with the configuration file
as input.

These are the same modules of the
Machine Unlearning workflow.

𝒟𝑓

𝒟𝑟

𝒟

Train

Retrain
Evaluation

Unlearner

𝑀𝑔

𝑀𝑢

𝑀

Unlearning
Request

𝐼𝑓

10Data Partitioning

Data Loading

Data
Preprocessing

Data Partitioning

Machine Unlearning requires more demanding Data handling
with respect to usual downstream tasks.

ERASURE introduces a flexible DataSplitter strategy,
enabling datasets to be partitioned by configuration in
virtually unlimited ways.

Each DataSplitter defines a specific partitioning logic,
such as sampling a fixed percentage of data or selecting
samples from a given class.

Since they are executed sequentially, the DataSplitters
can reference previously created partitions.

11Data Partitioning (2)

ERASURE also supports a parameter Z.

Imagine you want to remove all the images of George Clooney from CelebA.

There are the
labels (Y) There are the

samples (X)

12Data Partitioning (3)

There is no information on what celebrity is pictured in each photo! If we only pass
the plain dataset (X and Y), we will not be able to filter out pictures, which is
critical in Machine Unlearning.

13Data Partitioning (4)

ERASURE - Machine Unlearning Development and Benchmarking Framework KDD ’25, August 03–07, 2025, Toronto, ON, Canada

Figure 3: Overview of the main classes of the ERASURE Unlearning Framework and their hierarchical relations.

1 "data": {"class":"erasure.data.<NS>.DatasetManager",
2 "parameters": {
3 "DataSource": { "class":"erasure.data.<NS>.HFDataSource",
4 "parameters": {"path": "user_id/ag_news", ... ,
5 "preprocess":[
6 {"class":"erasure.data.<NS>.add_z_label.StringContain",
7 "parameters":{"contains":["Real Madrid"]}},
8 {"class":"erasure.data.<NS>.TokenizeX",
9 "parameters":{

10 "tokenizer":
11 {"class":"erasure.data.<NS>.TokenizerWrapper",
12 "parameters":{"tokenizer": "bert-base-uncased",

...}} }} ...]}},
13 "partitions": [
14 {"class":"erasure.data.<NS>.DataSplitterByZ",

"parameters":{"parts_names":["forget", "other"],
15 "z_labels":[1]}},
16 {"class":"erasure.data.<NS>.DataSplitterPercentage",

"parameters":{"parts_names":["retain", "test"],
17 "percentage":0.8, "ref_data":"other"}},
18 {"class":"erasure.data.<NS>.DataSplitterConcat",

"parameters":{"parts_names":["train","-"],
19 "concat_splits":["retain","forget"]}}
20],
21 "batch_size":64}}

Listing 2: Snippet of a Data section from an example ERASURE
configuration . It replace Lines 3-4 of Listing 1.

4.1 Core Components
The class diagram in Figure 3 shows the readily available com-
ponents included in ERASURE. Hereafter, we present the three
main modules designed to develop and evaluate all the aspects of
the unlearning process: data management, unlearning methods, and
evaluation.
Data Management - The Data Management module of ERASURE
is designed specifically to meet the unique requirements of machine
unlearning. All operations occur within the DataManager class,
which orchestrates three main steps: (i) Data loading, (ii) prepro-
cessing, and (iii) partitioning. (i) the DataManager creates the
specified DataSource class to load a dataset. ERASURE sup-
ports directly the most popular repositories as Hugging Face [20],
TorchVision [36], UCI Repository [22], and Torch Geometric [11],
and standard file formats (like torch files or CSVs). Additionally,
ERASURE allows users to integrate custom data loaders, giving
full flexibility to incorporate any dataset. (ii) Once the dataset is
loaded, it is processed in batches according to user-defined prepro-
cessing steps. Developers can easily integrate their preprocessing
logic by extending existing code or providing an ad hoc configura-
tion snippet. (iii) MU often requires more sophisticated partitioning
than conventional train/test splits. For example, most Unlearners
rely on Forget and Retain Sets. To accommodate this, ERASURE
introduces a flexible DataSplitter strategy, enabling datasets
to be partitioned by configuration in virtually unlimited ways. Each

DataSplitter defines a specific partitioning logic, such as sam-
pling a fixed percentage of data or selecting samples from a given
class. Since they are executed sequentially, the DataSplitters
can reference previously created partitions.
Next, we demonstrate these components in a machine unlearning
scenario, removing articles with a specified Named Entity from an
AG News-trained model. Listing 2 shows the ERASURE configu-
ration’s data section, where the JSON object defines the Dataset
Manager parameters. Specifically, the HFDataSource class loads
the AG News dataset from Hugging Face repository (Line 4). Next,
from Line 5 on, the preprocessing steps that will be applied to
batches of data are defined. The JSON object in Line 6 defines the
first preprocessing step: to select news articles containing a specific
Named Entity, we introduce an additional binary label z-label in
the dataset (its value is 1 if the NE appears in the entry). Following
this, Line 8 specifies the input text that needs tokenization. Note
that any tokenizer from Hugging Face can be used, and all its pa-
rameters (omitted in the listing for brevity) can be passed directly
through the ERASURE configuration. The partitions snippet at Line
13 defines the dataset partitions, with each JSON object representing
an individual DataSplitter. The DataSplitter defined at
Line 14 uses the z-label introduced in the preprocessing step (Line
6) to create two partitions: “forget” and “other”. The forget partition
includes all samples where the z-label is 1, meaning the news articles
contain the specified Named Entity, while other partition collects
the remaining part of the dataset. Next, Line 16 defines the JSON
object of the second Data Splitter, which further divides the
other partition into “retain” and “test” following, in this example,
the 80/20 ratio. Lastly, the DataSplitter at Line 18 defines the
“train” partition as the concatenation of the retain and forget ones,
a classic characteristic of an unleraning framework. As such, the
provided configuration ensures that the Forget Set comprises only
the news articles containing the given Named Entity and that the
Train Set is the union of the Forget and Retain Sets. More broadly,
this example illustrates the flexibility of ERASURE, showing how
its modular design allows users to define and adapt dataset load-
ing, preprocessing, and partitioning to fit a wide range of machine
unlearning scenarios.
Unlearning Methods - The Unlearner class is the foundational
component for all unlearning methods, encapsulating their core logic
within the framework. Each instance of an Unlearner is granted ac-
cess to a jailed (isolated) version of the original model, ensuring
that modifications do not directly alter the initial model state. Addi-
tionally, it has access to the DataLoaders assigned to each partition
as specified in the Data section of the configuration and receives
all method-specific parameters defined within the configuration file

For instance, the first DataSplitter,
called DataSplitterByZ, splits the
data in »forget» and «other»
based on the passed z_labels, in
this case [1].

Intuitively, if the sample has z=1,
the sample is put in the forget set.

In green, the cascading feature in
effect: the second DataSplitter
will split only the data from
«other».

14Model Training
KDD ’25, August 03–07, 2025, Toronto, ON, Canada D’Angelo et al.

Evaluation techniques assess the model’s effectiveness by measur-
ing how much the unlearned model 𝐿𝐿 approximates 𝐿𝑀 regarding
accuracy retention (utility). At the same time, a key part of the evalua-
tion is determining whether 𝐿𝐿 has successfully erased the influence
of samples from 𝑀 𝑁 (efficacy). Finally, evaluation also considers how
much more efficient it is to apply the Unlearner compared to fully
retraining 𝐿𝑀 (efficiency). Together, these measures offer a clear and
comprehensive view of how effectively the unlearning process has
been carried out.
Inversion of Control (IoC) and Factory Pattern enhance modular-
ity, maintainability, and flexibility. IoC [25] shifts control of object
creation and execution flow from client code to an external frame-
work, while the Factory Pattern [28] abstracts object instantiation.
IoC reduces tight coupling by delegating dependency management
to an external provider, often through dependency injection. This
improves testability and facilitates modifications. ERASURE lever-
ages IoC for dynamic dependency management. The Factory Pattern
encapsulates object creation within a dedicated factory class, en-
abling flexible instantiation without direct constructor invocation.
This approach is particularly beneficial when multiple object varia-
tions exist or instantiation is complex. Although distinct in purpose,
IoC and the Factory Pattern work complementary.

4 ERASURE Unlearning Framework
In this section, we discuss the ERASURE Unlearning Framework,
by providing an overview of its design principles and workflow
management. Then, we highlight the core components available;
and finally discuss the advanced features available, which allow
additional flexibility when integrating new functionalities.
Design Principles - ERASURE develops and compares diverse un-
learning techniques across multiple datasets, tasks, and models in
a reproducible manner. The framework adheres to object-oriented
programming principles, leveraging abstract classes and fully inte-
grating the Factory Pattern alongside Inversion of Control paradigms
to ensure maximal extensibility and adaptability. By adhering to
these principles, ERASURE allows fully configurable workflows –
as detailed in the following – which facilitate robustness and pre-
cise control. Its modular architecture enables the easy integration of
new datasets, unlearning methods, base models, and evaluation met-
rics. Furthermore, to enhance reproducibility, ERASURE provides
implementations (cf. 4.1) of state-of-the-art unlearning techniques,
datasets, models, and evaluation measures, all of which can be read-
ily used for customized experiments by specifying them within the
main configuration file.
Workflow Configuration - The classic unlearning workflow – as
shown in Figure 2 – is implemented by ERASURE at a high level al-
lowing its full customization. This result can be achieved by defining
an experiment through a main configuration file (in JSON notation),
which enables the design and execution of complex testing scenarios
in a straightforward and reproducible manner. Before providing de-
tails on the configuration file, we highlight one of the most powerful
and interesting mechanisms implemented in ERASURE. Each com-
ponent can be instantiated directly using a minimal JSON snippet
that specifies the required class and its corresponding parameters.
Parameters can range from simple data types to complex class ob-
jects, structured in a nested manner within the configuration file.

1 "data": {"class":"erasure.data.<NS>.DatasetManager",
2 "parameters": {
3 "DataSource": { ... },
4 "partitions": ["p_1", "p_2", ... , "p_n"]
5 }},
6 "predictor": {"class": "erasure.model.<NS>.TorchModel",
7 "parameters": {
8 "optimizer": {"class": "torch.optim.Adam"},
9 "loss_fn": {"class": "torch.nn.CrossEntropyLoss"},

10 "model": {"class": "erasure.<NS>.BERTClassifier"}
11 }},
12 "unlearners":[
13 {"compose_gold" : "configs/snippets/u_gold.json"},
14 .
15 .
16 ,
17 {"class":"erasure.<NS>.AdvancedNegGrad",
18 "parameters": {
19 "epochs": 1,
20 "ref_data_retain": "retain",
21 "ref_data_forget": "forget",
22 "optimizer": {"class": "torch.optim.Adam",

"parameters": {"lr": 0.0001}}}
23 }
24],
25 "evaluator":{
26 "class": "erasure.evaluations.<NS>.Evaluator",
27 "parameters": { "measures":[...] } }

Listing 1: Structure of the main configuration snippet for an
ERASURE experiment. →𝑁𝑂↑ compacts sub-modules namespace.

Moreover, the classes and parameters that can be instantiated are not
limited to ERASURE’s built-in components; they can also reference
external libraries (e.g., PyTorch or scikit-learn) without requiring
any additional code.
The structure of the main configuration, outlined in Listing 1, con-
sists of four fundamental modules: data, predictor, unlearners, and
evaluator.
The data JSON snippet defines the dataset and its partitions, spec-
ified within the data JSON object (shown in Listing 1). This is
done by selecting the appropriate DataSource and structuring the
dataset into subsets using a chain of DataSplitters (see Line 4
of Listing 1 and the details in Listing 2).
The predictor JSON object defines all model-related details. In this
example, it specifies TorchModel to directly utilize PyTorch net-
works and configure all relevant parameters, including the optimizer
and loss function. Note that Lines 8 and 9 of Listing 1 show how
the original implementations and parameters can be used without
requiring coding anything.
The unlearners JSON array (line 12) defines the list of unlearn-
ers, which will be evaluated in sequence but in an isolated man-
ner. For example, lines 17-22 of Listing 1 show how to define the
AdvancedNegGrad unlearner, including its reference partitions
(lines 20–21) and optimizer parameters (line 22).
The evaluator JSON object (Line 25) defines the list of measures
that must be used with their parameters – omitted here for the sake of
space. Moreover, the compose_ capability allows the substitution
of any of the JSON snippets with additional files. For example, the
code at line 13 of Listing 1 will be replaced at runtime with the
file’s content configs/snippets/u_gold.json. Once the
configuration is complete, as shown in Figure 1, it is possible to run
the experiments by executing main.py with the configuration file
as input.

ERASURE handles batched training
automatically.

All the training parameters are defined
in the configuration file, along with the
seed for reproducibility.

ERASURE easily handles classes and parameters from external
libraries, like Pytorch or sci-kit learn.

15Unlearners

KDD ’25, August 03–07, 2025, Toronto, ON, Canada D’Angelo et al.

Evaluation techniques assess the model’s effectiveness by measur-
ing how much the unlearned model 𝐿𝐿 approximates 𝐿𝑀 regarding
accuracy retention (utility). At the same time, a key part of the evalua-
tion is determining whether 𝐿𝐿 has successfully erased the influence
of samples from 𝑀 𝑁 (efficacy). Finally, evaluation also considers how
much more efficient it is to apply the Unlearner compared to fully
retraining 𝐿𝑀 (efficiency). Together, these measures offer a clear and
comprehensive view of how effectively the unlearning process has
been carried out.
Inversion of Control (IoC) and Factory Pattern enhance modular-
ity, maintainability, and flexibility. IoC [25] shifts control of object
creation and execution flow from client code to an external frame-
work, while the Factory Pattern [28] abstracts object instantiation.
IoC reduces tight coupling by delegating dependency management
to an external provider, often through dependency injection. This
improves testability and facilitates modifications. ERASURE lever-
ages IoC for dynamic dependency management. The Factory Pattern
encapsulates object creation within a dedicated factory class, en-
abling flexible instantiation without direct constructor invocation.
This approach is particularly beneficial when multiple object varia-
tions exist or instantiation is complex. Although distinct in purpose,
IoC and the Factory Pattern work complementary.

4 ERASURE Unlearning Framework
In this section, we discuss the ERASURE Unlearning Framework,
by providing an overview of its design principles and workflow
management. Then, we highlight the core components available;
and finally discuss the advanced features available, which allow
additional flexibility when integrating new functionalities.
Design Principles - ERASURE develops and compares diverse un-
learning techniques across multiple datasets, tasks, and models in
a reproducible manner. The framework adheres to object-oriented
programming principles, leveraging abstract classes and fully inte-
grating the Factory Pattern alongside Inversion of Control paradigms
to ensure maximal extensibility and adaptability. By adhering to
these principles, ERASURE allows fully configurable workflows –
as detailed in the following – which facilitate robustness and pre-
cise control. Its modular architecture enables the easy integration of
new datasets, unlearning methods, base models, and evaluation met-
rics. Furthermore, to enhance reproducibility, ERASURE provides
implementations (cf. 4.1) of state-of-the-art unlearning techniques,
datasets, models, and evaluation measures, all of which can be read-
ily used for customized experiments by specifying them within the
main configuration file.
Workflow Configuration - The classic unlearning workflow – as
shown in Figure 2 – is implemented by ERASURE at a high level al-
lowing its full customization. This result can be achieved by defining
an experiment through a main configuration file (in JSON notation),
which enables the design and execution of complex testing scenarios
in a straightforward and reproducible manner. Before providing de-
tails on the configuration file, we highlight one of the most powerful
and interesting mechanisms implemented in ERASURE. Each com-
ponent can be instantiated directly using a minimal JSON snippet
that specifies the required class and its corresponding parameters.
Parameters can range from simple data types to complex class ob-
jects, structured in a nested manner within the configuration file.

1 "data": {"class":"erasure.data.<NS>.DatasetManager",
2 "parameters": {
3 "DataSource": { ... },
4 "partitions": ["p_1", "p_2", ... , "p_n"]
5 }},
6 "predictor": {"class": "erasure.model.<NS>.TorchModel",
7 "parameters": {
8 "optimizer": {"class": "torch.optim.Adam"},
9 "loss_fn": {"class": "torch.nn.CrossEntropyLoss"},

10 "model": {"class": "erasure.<NS>.BERTClassifier"}
11 }},
12 "unlearners":[
13 {"compose_gold" : "configs/snippets/u_gold.json"},
14 .
15 .
16 ,
17 {"class":"erasure.<NS>.AdvancedNegGrad",
18 "parameters": {
19 "epochs": 1,
20 "ref_data_retain": "retain",
21 "ref_data_forget": "forget",
22 "optimizer": {"class": "torch.optim.Adam",

"parameters": {"lr": 0.0001}}}
23 }
24],
25 "evaluator":{
26 "class": "erasure.evaluations.<NS>.Evaluator",
27 "parameters": { "measures":[...] } }

Listing 1: Structure of the main configuration snippet for an
ERASURE experiment. →𝑁𝑂↑ compacts sub-modules namespace.

Moreover, the classes and parameters that can be instantiated are not
limited to ERASURE’s built-in components; they can also reference
external libraries (e.g., PyTorch or scikit-learn) without requiring
any additional code.
The structure of the main configuration, outlined in Listing 1, con-
sists of four fundamental modules: data, predictor, unlearners, and
evaluator.
The data JSON snippet defines the dataset and its partitions, spec-
ified within the data JSON object (shown in Listing 1). This is
done by selecting the appropriate DataSource and structuring the
dataset into subsets using a chain of DataSplitters (see Line 4
of Listing 1 and the details in Listing 2).
The predictor JSON object defines all model-related details. In this
example, it specifies TorchModel to directly utilize PyTorch net-
works and configure all relevant parameters, including the optimizer
and loss function. Note that Lines 8 and 9 of Listing 1 show how
the original implementations and parameters can be used without
requiring coding anything.
The unlearners JSON array (line 12) defines the list of unlearn-
ers, which will be evaluated in sequence but in an isolated man-
ner. For example, lines 17-22 of Listing 1 show how to define the
AdvancedNegGrad unlearner, including its reference partitions
(lines 20–21) and optimizer parameters (line 22).
The evaluator JSON object (Line 25) defines the list of measures
that must be used with their parameters – omitted here for the sake of
space. Moreover, the compose_ capability allows the substitution
of any of the JSON snippets with additional files. For example, the
code at line 13 of Listing 1 will be replaced at runtime with the
file’s content configs/snippets/u_gold.json. Once the
configuration is complete, as shown in Figure 1, it is possible to run
the experiments by executing main.py with the configuration file
as input.

The third section of a JSON Main
Configuration file is the “unlearners”
JSON Array.

Consider, for instance, the Unlearner
called AdvancedNegGrad.

It requires a series of parameters, like epochs or optimizer, that can
be passed directly from the JSON Configuration file.

16Implementing new unlearners
To implement a Custom Unlearner, one can extend the

TorchUnlearner class and implement its __unlearn__(self) method.

It’s that simple.

• __unlearn__(self) takes nothing as input but has access to all the
parameters that were passed through the configuration file, all the
dataset and datasets partition, and the original model.

• The original model is given in isolation, meaning that all
Unlearners has access to their copy. So, the modifications made by
one Unlearner will not propagate to other Unlearners.

• The __unlearn__(self) method must return a modified version of
the original model. This returned model will be evaluated lately.

17Evaluating Unlearners

KDD ’25, August 03–07, 2025, Toronto, ON, Canada D’Angelo et al.

Evaluation techniques assess the model’s effectiveness by measur-
ing how much the unlearned model 𝐿𝐿 approximates 𝐿𝑀 regarding
accuracy retention (utility). At the same time, a key part of the evalua-
tion is determining whether 𝐿𝐿 has successfully erased the influence
of samples from 𝑀 𝑁 (efficacy). Finally, evaluation also considers how
much more efficient it is to apply the Unlearner compared to fully
retraining 𝐿𝑀 (efficiency). Together, these measures offer a clear and
comprehensive view of how effectively the unlearning process has
been carried out.
Inversion of Control (IoC) and Factory Pattern enhance modular-
ity, maintainability, and flexibility. IoC [25] shifts control of object
creation and execution flow from client code to an external frame-
work, while the Factory Pattern [28] abstracts object instantiation.
IoC reduces tight coupling by delegating dependency management
to an external provider, often through dependency injection. This
improves testability and facilitates modifications. ERASURE lever-
ages IoC for dynamic dependency management. The Factory Pattern
encapsulates object creation within a dedicated factory class, en-
abling flexible instantiation without direct constructor invocation.
This approach is particularly beneficial when multiple object varia-
tions exist or instantiation is complex. Although distinct in purpose,
IoC and the Factory Pattern work complementary.

4 ERASURE Unlearning Framework
In this section, we discuss the ERASURE Unlearning Framework,
by providing an overview of its design principles and workflow
management. Then, we highlight the core components available;
and finally discuss the advanced features available, which allow
additional flexibility when integrating new functionalities.
Design Principles - ERASURE develops and compares diverse un-
learning techniques across multiple datasets, tasks, and models in
a reproducible manner. The framework adheres to object-oriented
programming principles, leveraging abstract classes and fully inte-
grating the Factory Pattern alongside Inversion of Control paradigms
to ensure maximal extensibility and adaptability. By adhering to
these principles, ERASURE allows fully configurable workflows –
as detailed in the following – which facilitate robustness and pre-
cise control. Its modular architecture enables the easy integration of
new datasets, unlearning methods, base models, and evaluation met-
rics. Furthermore, to enhance reproducibility, ERASURE provides
implementations (cf. 4.1) of state-of-the-art unlearning techniques,
datasets, models, and evaluation measures, all of which can be read-
ily used for customized experiments by specifying them within the
main configuration file.
Workflow Configuration - The classic unlearning workflow – as
shown in Figure 2 – is implemented by ERASURE at a high level al-
lowing its full customization. This result can be achieved by defining
an experiment through a main configuration file (in JSON notation),
which enables the design and execution of complex testing scenarios
in a straightforward and reproducible manner. Before providing de-
tails on the configuration file, we highlight one of the most powerful
and interesting mechanisms implemented in ERASURE. Each com-
ponent can be instantiated directly using a minimal JSON snippet
that specifies the required class and its corresponding parameters.
Parameters can range from simple data types to complex class ob-
jects, structured in a nested manner within the configuration file.

1 "data": {"class":"erasure.data.<NS>.DatasetManager",
2 "parameters": {
3 "DataSource": { ... },
4 "partitions": ["p_1", "p_2", ... , "p_n"]
5 }},
6 "predictor": {"class": "erasure.model.<NS>.TorchModel",
7 "parameters": {
8 "optimizer": {"class": "torch.optim.Adam"},
9 "loss_fn": {"class": "torch.nn.CrossEntropyLoss"},

10 "model": {"class": "erasure.<NS>.BERTClassifier"}
11 }},
12 "unlearners":[
13 {"compose_gold" : "configs/snippets/u_gold.json"},
14 .
15 .
16 ,
17 {"class":"erasure.<NS>.AdvancedNegGrad",
18 "parameters": {
19 "epochs": 1,
20 "ref_data_retain": "retain",
21 "ref_data_forget": "forget",
22 "optimizer": {"class": "torch.optim.Adam",

"parameters": {"lr": 0.0001}}}
23 }
24],
25 "evaluator":{
26 "class": "erasure.evaluations.<NS>.Evaluator",
27 "parameters": { "measures":[...] } }

Listing 1: Structure of the main configuration snippet for an
ERASURE experiment. →𝑁𝑂↑ compacts sub-modules namespace.

Moreover, the classes and parameters that can be instantiated are not
limited to ERASURE’s built-in components; they can also reference
external libraries (e.g., PyTorch or scikit-learn) without requiring
any additional code.
The structure of the main configuration, outlined in Listing 1, con-
sists of four fundamental modules: data, predictor, unlearners, and
evaluator.
The data JSON snippet defines the dataset and its partitions, spec-
ified within the data JSON object (shown in Listing 1). This is
done by selecting the appropriate DataSource and structuring the
dataset into subsets using a chain of DataSplitters (see Line 4
of Listing 1 and the details in Listing 2).
The predictor JSON object defines all model-related details. In this
example, it specifies TorchModel to directly utilize PyTorch net-
works and configure all relevant parameters, including the optimizer
and loss function. Note that Lines 8 and 9 of Listing 1 show how
the original implementations and parameters can be used without
requiring coding anything.
The unlearners JSON array (line 12) defines the list of unlearn-
ers, which will be evaluated in sequence but in an isolated man-
ner. For example, lines 17-22 of Listing 1 show how to define the
AdvancedNegGrad unlearner, including its reference partitions
(lines 20–21) and optimizer parameters (line 22).
The evaluator JSON object (Line 25) defines the list of measures
that must be used with their parameters – omitted here for the sake of
space. Moreover, the compose_ capability allows the substitution
of any of the JSON snippets with additional files. For example, the
code at line 13 of Listing 1 will be replaced at runtime with the
file’s content configs/snippets/u_gold.json. Once the
configuration is complete, as shown in Figure 1, it is possible to run
the experiments by executing main.py with the configuration file
as input.

ERASURE comes with the most well-
known Unlearning metrics out-of-the-
box.

Other metrics, like Accuracy, can be
instantiated directly from external
libraries, like sci-kit learn.

All metrics have access to both the modified model and the original
model, to evaluate differences if they are needed.

18ERASURE Out-of-the-box

ALL datasets
from

HuggingFace

ALL datasets
from

Torchvision

Gold Model

FineTuning

Advanced
NegGrad

BadTeaching

NegGrad

Eu_k

SRL

FisherForgetting

SalUn

Composite

Scrub

SSD

Unsir

ALL datasets
from UCI

Repository

ALL datasets
from Torch
Geometric

Datasets Unlearners Evaluations

ALL metrics
from sklearn

RunTime

Memory Usage

UMIA

19

Extending Erasure is as simple as creating a class with your
logic.

Demo paper at IJCAI for more info:

CIKM Resource paper coming soon!

Extending ERASURE

20Support ERASURE!

https://github.com/aiim-research/ERASURE

PLEASE SUPPORT US WITH A STAR!

https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE

Thank you for your attention

