Forgetting nght Towards Reproducible @
Benchmarks in Machine Unlearning with
ERASURE

Andrea D'Angelo

Universita degli Studi dell’Aquila / Italy

Machine Unlearning a

Machine Unlearning (MU) is a rapidly growing field, with several
publications and methods being published every month.

Documents by year

300

— L g —=

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023 2025
Year

A quick scopus search shows that the topic is quickly on the rise.

Rationale (1)

As often the case for new topics, benchmarking
standardization is still lacking.

We noticed that many works build code only relevant to
their specific use case.

This results in duplicated efforts and low reproduciblity.

Rationale (2) a

The MU community needs a standardized tool for
reproducible and extensible testing.

DA
This was our rationale for building ERASURE: a —_—"
modular, extensible framework for Machine .
Unlearning. ERASURE

ERASURE is a modular, extensible Machine Unlearning Framework.

Design Patterns (1)

Inversion of
Control (IoC)

| |

Dependency Dependency

Injection (DI) Lookup (DL)
Constructor Setter Service Locator Factory
Injection Injection Pattern Pattern

Method JNDI Lookup

Injection Pattern

* Inversion of Control (loC): shifts control of object creation and
execution flow from client code to an external framework. loC
reduces tight coupling by delegating dependency management to
an external provider, often through dependency injection. ERASURE
leverages loC for dynamic dependency management.

Design Patterns (2)

7 N
. Interface: l
FactoryPattern (Client) I == Person >> |
+ main(): void | |
! + run(): void I
noks I A [y l
Y I i
PersonFactory creates | ConcretePersonA ConcretePersonB ConcretePersonC :
+ type: String > I
+ getPerson(type): Person * |+ run(): void +run(): void + run(): void I
\ /

* Factory Pattern: abstracts object instantiation. It encapsulates
object creation within a dedicated factory class, enabling flexible
instantiation. ERASURE uses the Factory Pattern to instantiate
Datasets, Models, Unlearners, and everything that is needed for a
complete Machine Unlearning workflow.

Machine Unlearning Workflow

ERASURE was built with the MU workflow at its core.

ERASURE handles all the steps of a typical Machine Unlearning workflow:

S
Train > ZD —
1%
1\ M T Q
-— =] > S
= __ ~—j——>| Unlearner ——> (&
tj[]) =) 2, v
D > R Dy M, ‘ Evaluation
Q | Request) —) \ %% x
D T — =] > Retrain —™> ° (g’)
N J)
I¢ D M,

ERASURE's Configuration

ALL the Experimental settings in ERASURE are defined through a single JSON file, called

Main Configuration.

..

EXPERIMENT DEFINITION

The input JSON file includes
all the experimental settings

{

..

The Main Configuration file needs to specify all these components.

data

predictor

unlearners

metrics

— —J _J

[|
|
(
(

...

RESULTS

ERASURE can save results in
different formats

EXECUTION

ERASURE instantiates the
components and runs experiments

(erasure) user@localhost ~ %
python main.py proof_of concept.jsonc

Main Configuration

Y
Train ZD
) M’ .
—-— = el
-
== | == —>| Unlearner . 9 —l
"o "o g
2 5 D
If D M.g ’

These are the same modules of the
Machine Unlearning workflow.

lp |

24
25
26

27

"data": {"class":"erasure.data.<NS>.DatasetManager",
"parameters": {
"DataSource": { ... },
"partltlons“ : ["p_l", "p_2 "’ "p_n"]
by
"predictor": {"class": "erasure.model.<NS>.TorchModel",
"parameters": {
"optimizer": {"class": "torch.optim.Adam"},
"loss_fn": {"class": "torch.nn.CrossEntropyLoss"},
"model": {"class": "erasure.<NS>.BERTClassifier"}
|
"unlearners": [

{"compose_gold" "configs/snippets/u_gold. json"},

{"class":"erasure.<NS>.AdvancedNegGrad",
"parameters": {
"epochs": 1,

"ref_ data_retain": "retain",

"ref_data_forget": "forget",

"optimizer": {"class": "torch.optim.Adam",
"parameters": {"lr": 0.0001}}}

1,

"evaluator":{

"class": "erasure.evaluations.<NS>.Evaluator",
"parameters": { "measures":[...] } }

Data Partitioning

Machine Unlearning requires more demanding Data handling
with respect to usual downstream tasks.

ERASURE introduces a flexible DataSplitter strategy,
enabling datasets to be partitioned by configuration in
virtually unlimited ways.

Data Loading

Data Each DataSplitter defines a specific partitioning logic,
Preprocessing such as sampling a fixed percentage of data or selecting
samples from a given class.

Data Partitioning Since they are executed sequentially, the DataSplitters
can reference previously created partitions.

Data Partitioning (2)

ERASURE also supports a parameter Z.

Imagine you want to remove all the images of George Clooney from CelebA.

There are the

labels (Y) 1 There are the

= 2. samples (X)

Data Partitioning (3)

Eyeglasses

Bangs

Oval Face

There is no information on what celebrity is pictured in each photo! If we only pass
the plain dataset (X and Y), we will not be able to filter out pictures, which is
critical in Machine Unlearning.

Data Partitioning (4)

14

15
16

17
18

19
20

"partitions": [

{"class":"erasure.data.<NS>.DataSplitterByzZ"y

"parameters": {"parts_names":["forget", "other"],

"z_labels":[1]1}1},
{"class":"erasure.data.<NS>.DataSplitterPercentage",
"parameters":{"parts.names":["retain", "test"],
"percentage":0.8, "ref data":"other"}},
{"class":"erasure.data.<NS>.DataSplitterConcat",
"parameters": {"parts_names":["train","-"],
"concat_splits":["retain","forget"]}}
] 14

For instance, the first DataSplitter,
called DataSplitterByZ, splits the
data in »forget» and «other»
based on the passed z_labels, in
this case [1].

Intuitively, if the sample has z=1,
the sample is put in the forget set.

In green, the cascading feature in
effect: the second DataSplitter
will split only the data from
«other».

Model Training <«

ERASURE handles batched training

5 "predictor": {"class": "erasure.model.<NS>.TorchModel",

6 o

7 "parameters": { automatlca“y

8 "optimizer": {"class": "torch.optim.Adam"},

0 "loss_fn": {"class": "torch.nn.CrossEntropyLoss"},

10 "model": {"class": "erasure.<NS>.BERTClassifier"} . . .
o1y, All the training parameters are defined

in the configuration file, along with the
seed for reproducibility.

ERASURE easily handles classes and parameters from external
libraries, like Pytorch or sci-kit learn.

Unlearners

The third section of a JSON Main
Configuration file is the “unlearners”
JSON Array.

Consider, for instance, the Unlearner
called AdvancedNegGrad.

12 "unlearners": [

13 {"compose_gold" : "configs/snippets/u_gold. json"},

14

15 .

16 0

17 {"class":"erasure.<NS>.AdvancedNegGrad",

18 "parameters": {

19 "epochs": 1,

20 "ref _data_retain": "retain",

21 "ref_data_forget": "forget",

22 "optimizer": {"class": "torch.optim.Adam",
"parameters": {"1lr": 0.0001}}}

23 }

24 1,

It requires a series of parameters, like epochs or optimizer, that can
be passed directly from the JSON Configuration file.

Implementing new unlearners

To implement a Custom Unlearner, one can extend the
TorchUnlearner class and implement its __unlearn__ (self) method.

It’s that simple.

 _unlearn__ (self) takes nothing as input but has access to all the
parameters that were passed through the configuration file, all the
dataset and datasets partition, and the original model.

* The original model is given in isolation, meaning that all
Unlearners has access to their copy. So, the modifications made by
one Unlearner will not propagate to other Unlearners.

e The __unlearn__ (self) method must return a modified version of
the original model. This returned model will be evaluated lately.

Evaluating Unlearners

ERASURE comes with the most well-
known Unlearning metrics out-of-the-
box.

25 "evaluator":{

Other metrICS, ||ke Accuracy’ can be 23 "class"é "eras?re.evaluatio?s.<NS]>.];3v?luator",
. . . 2 "parameters": "measures": 500
instantiated directly from external

libraries, like sci-kit learn.

All metrics have access to both the modified model and the original
model, to evaluate differences if they are needed.

ERASURE Out-of-the-box

Datasets

ALL datasets
from
HuggingFace

ALL datasets
from
Torchvision

ALL datasets
from UCI
Repository

ALL datasets

from Torch
Geometric

Unlearners

Gold Model

FineTuning

Advanced
NegGrad

BadTeaching

NegGrad

Eu k

SRL

FisherForgetting
SalUn

Composite

Scrub

SSD

Evaluations

Extending ERASURE <«

Extending Erasure is as simple as creating a class with your
logic.

Demo paper at |JCAI for more info:

CIKM Resource paper coming soon!

Support ERASURE! a

https://github.com/aiim-research/ERASURE

] ERASURE
PLEASE SUPPORT US WITH A STAR!

https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE
https://github.com/aiim-research/ERASURE

UNIVERSITA DISIM ‘
DEGLI STUDI ol
DELL’AQUILA e Matematica

Thank you for your attention

